Error message here!

Hide Error message here!

忘记密码?

Error message here!

请输入正确邮箱

Hide Error message here!

密码丢失?请输入您的电子邮件地址。您将收到一个重设密码链接。

Error message here!

返回登录

Close

ML.NET 0.10特性简介

Ken.W 2019-02-12 21:26:00 阅读数:161 评论数:0 点赞数:0 收藏数:0

IDataView被单独作为一个类库包

IDataView组件为表格式数据提供了非常高效的处理方式,尤其是用于机器学习和高级分析应用。它被设计为可以高效地处理高维数据和大型数据集。并且也适合处理属于更大的分布式数据集中的单个数据区块结点。

在ML.NET 0.10中,IDataView被拆分成单个程序集和NuGet类库包。这对于与其它API及框架交互是极重要的一步。

在被拆分后,其它的类库将能直接引用它,而不需要引用整个ML.NET。这样有助于第三方类库也能使用IDataView所提供的强大功能。

场感知分解机训练器支持多个特征列

在之前的ML.NET版本中,当使用场感知分解机(FFM)训练器时,仅可以提供单个特征列。

在新的版本里,支持在Options参数里添加额外的特征列。

var ffmArgs = new FieldAwareFactorizationMachineTrainer.Options();
// Create the multiple field names.
ffmArgs.FeatureColumn = nameof(MyObservationClass.MyField1); // 首个字段
ffmArgs.ExtraFeatureColumns = new[]{ nameof(MyObservationClass.MyField2), nameof(MyObservationClass.MyField3) }; // 额外的字段
var pipeline = mlContext.BinaryClassification.Trainers.FieldAwareFactorizationMachine(ffmArgs);
var model = pipeline.Fit(dataView);

支持返回多个预测标签

之前的版本里,即使预测多类别分类问题,也只能返回单一的标签。

现在,这一缺陷终于被修复了。(其实在内部逻辑里已经对多项预测完成处理,但过去的API只返回了单一的结果)

源自社区的示例页面

作为ML.NET Samples的一部分,现在新增了一个特殊页面——由社区提供的多个示例。

里面有不少很好的例子:

照片查询的WPF应用,其内部运行TensorFlow模型,并导出为ONNX格式。

使用ML.NET的UWP应用:

当然,欢迎有越来越多的贡献者加入其中,提供更多的示例。

版权声明
本文为[Ken.W]所创,转载请带上原文链接,感谢
https://www.cnblogs.com/kenwoo/p/10367137.html

编程之旅,人生之路,不止于编程,还有诗和远方。
阅代码原理,看框架知识,学企业实践;
赏诗词,读日记,踏人生之路,观世界之行;

支付宝红包,每日可领